基本初等函数求导公式
- $(C)' = 0$
- $(x^u)'=ux^{u-1}$
- $(sin x)' = cos x $
- $(tan x)' = sec^2 x $
- $(cos x)' = -sin x $
- $(cot x)' = - csc^2 x$
- $(sec x)' =sec x * tan x$
- $(csc x)' = -csc x * cot x$
- $(a^x)' = a^x ln a$
- $(e^x)' = e^x$
- $(log_a x)' = {1 over xln a} $
- $(ln x)' = {1 over x}$
- $(arcsin x)' = {frac1{sqrt{1-x^2}} }$
- $(arccos x)' = {-frac1{sqrt{1-x^2}} }$
- $(arctan x)' = {frac1{1+x^2} }$
- $(arctan x)' = {-frac1{1+x^2} }$
函数求导法则
设 $z =z(x),f = f(x)$ 都可导,则:
1.$(u{pm}f)'=u'pm v'$
2.$(uv)'=u'v + uv'$
3.$(frac{u}{v})' = frac {u'v-uv'}{v^2}$
链式法则
设 $z =z(x),f = f(z)$ 都可导,则:
$frac{partial f}{partial x} = frac{partial f}{partial z} * frac{partial z}{partial x}$
矩阵转置求导(前导不变,后导转置)
$(AX)' = A^T$
$(XA)' = A$
$(x^TA)' = A$
$(Ax^T)' = A^T$
近期评论