数据结构备忘录:trie树基本操作

Trie树是一种可以实现字符串多模匹配的数据结构,在字符串处理中有很重要的作用,本文Trie树实现参考了殷人昆数据结构与算法C++语言描述第二版中的内容。不同的是分支节点的分支结构用C++标准库map容器实现,原因是map基于红黑树,查找速度快,另外节省内存空间,避免浪费

C++实现如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

#include <map>
#include <stack>
#include <vector>
#include <string>
#include <iostream>
using namespace std;

struct //Trie树节点类型
{
enum NodeType { DATANODE, BRANCHNODE } type_flag;
union
{
string key_in_trie; //叶节点关键字
map<string, TrieTreeNode *> sub_ptr; //分支节点的分支字符和对应的指向分支字符对应的子节点的指针之间的映射关系
};

TrieTreeNode(const string &k) :type_flag(NodeType::DATANODE), key_in_trie(k) {}
TrieTreeNode() :type_flag(NodeType::BRANCHNODE), sub_ptr() {}

TrieTreeNode(TrieTreeNode &be_copied)
{
switch (be_copied.type_flag)
{
case NodeType::DATANODE: new (&key_in_trie) string(be_copied.key_in_trie); break;
case NodeType::BRANCHNODE:
{
new (&sub_ptr) map<string, TrieTreeNode *>();
for (map<string, TrieTreeNode *>::iterator p = be_copied.sub_ptr.begin(); p != be_copied.sub_ptr.end(); ++p)
{
sub_ptr.insert(make_pair(p->first, nullptr));
}
}
break;
}
}

~TrieTreeNode()
{
switch (type_flag)
{
case NodeType::DATANODE : key_in_trie.~string(); break;
case NodeType::BRANCHNODE: break;
}
}
};

class TrieTree
{
public:
bool insert(const string &be_inserted) const; //Trie树中插入关键字,true成功false失败
bool deleteElem(const string &be_deleted) const; //Trie树中删除指定关键字,true成功false失败
TrieTreeNode *copy(); //拷贝Trie树,返回指向副本Trie树的指针
TrieTree() { root = new TrieTreeNode(); }
TrieTree(TrieTree &be_copied) { root = be_copied.copy(); }
~TrieTree();
private:
bool static strCompare(const string &left, const string &right, const size_t &i);
TrieTreeNode *root; //Trie树根节点
};

bool TrieTree::strCompare(const string &left, const string &right, const size_t &i)
{
for (size_t j = i; ; ++j)
{
if (j >= left.size() && j >= right.size())
return true;
else if (j >= left.size() || j >= right.size())
return false;
else if (left[j] != right[j])
return false;
}
}

bool TrieTree::deleteElem(const string &be_deleted) const
{
TrieTreeNode *run = root;
stack<pair<TrieTreeNode *, map<string, TrieTreeNode *>::iterator>> work_stack;
string::size_type i = 0;
while (run->type_flag != TrieTreeNode::NodeType::DATANODE)
{
if (i < be_deleted.size())
{
string temp = be_deleted.substr(i, 1);
++i;
map<string, TrieTreeNode *>::iterator it = run->sub_ptr.find(temp);
if (it == run->sub_ptr.end())
{
return false;
}
else
{
work_stack.push(make_pair(run, it));
run = it->second;
}
}
else
{
map<string, TrieTreeNode *>::iterator it = run->sub_ptr.find("");
if (it != run->sub_ptr.end())
{
work_stack.push(make_pair(run, it));
run = it->second;
break;
}
else
{
return false;
}
}
}

if (work_stack.top().second->first != "" && strCompare(be_deleted, run->key_in_trie, i) == false)
{
return false;
}

bool delete_or_not = true;
while (work_stack.top().first != root)
{
if (delete_or_not == true)
{
delete work_stack.top().second->second;
if (work_stack.top().second->second->type_flag == TrieTreeNode::NodeType::DATANODE)
{
run = nullptr;
}

work_stack.top().first->sub_ptr.erase(work_stack.top().second);

if (work_stack.top().first->sub_ptr.size() >= 2)
{
return true;
}
else if (work_stack.top().first->sub_ptr.size() == 1)
{
if (work_stack.top().first->sub_ptr.begin()->second->type_flag != TrieTreeNode::NodeType::DATANODE)
{
return true;
}
else
{
run = work_stack.top().first->sub_ptr.begin()->second;
delete work_stack.top().first;
delete_or_not = false;
}
}
work_stack.pop();
}
else
{
if (work_stack.top().first->sub_ptr.size() >= 2)
{
work_stack.top().second->second = run;
return true;
}
else
{
delete work_stack.top().first;
work_stack.pop();
}
}
}

if (delete_or_not == true)
{
delete work_stack.top().second->second;
root->sub_ptr.erase(work_stack.top().second);
}
else
{
work_stack.top().second->second = run;
}
return true;
}

bool TrieTree::insert(const string &be_inserted) const
{
TrieTreeNode *run = root;
map<string, TrieTreeNode *>::iterator father;
string::size_type i = 0;
while (run->type_flag != TrieTreeNode::NodeType::DATANODE)
{
if (i < be_inserted.size())
{
string temp = be_inserted.substr(i, 1);
++i;
map<string, TrieTreeNode *>::iterator it = run->sub_ptr.find(temp);
if (it == run->sub_ptr.end())
{
run->sub_ptr.insert(make_pair(temp, new TrieTreeNode(be_inserted)));
return true;
}
else
{
father = it;
run = it->second;
}
}
else
{
if (run->sub_ptr.find("") != run->sub_ptr.end())
{
return false;
}
else
{
run->sub_ptr.insert(make_pair("", new TrieTreeNode(be_inserted)));
return true;
}
}
}

if (strCompare(be_inserted, run->key_in_trie, i) == true)
{
return false;
}
else
{
while (true)
{
father->second = new TrieTreeNode();
if (i >= be_inserted.size())
{
father->second->sub_ptr.insert(make_pair("", new TrieTreeNode(be_inserted)));
father->second->sub_ptr.insert(make_pair(run->key_in_trie.substr(i, 1), run));
}
else if (i >= run->key_in_trie.size())
{
father->second->sub_ptr.insert(make_pair("", run));
father->second->sub_ptr.insert(make_pair(be_inserted.substr(i, 1), new TrieTreeNode(be_inserted)));
}
else if (be_inserted[i] != run->key_in_trie[i])
{
father->second->sub_ptr.insert(make_pair(run->key_in_trie.substr(i, 1), run));
father->second->sub_ptr.insert(make_pair(be_inserted.substr(i, 1), new TrieTreeNode(be_inserted)));
}
else
{
father = father->second->sub_ptr.insert(make_pair(be_inserted.substr(i, 1), new TrieTreeNode())).first;
++i;
continue;
}
return true;
}
}
}

TrieTree::~TrieTree()
{
TrieTreeNode *run = root;
stack<pair<TrieTreeNode *, map<string, TrieTreeNode *>::iterator>> work_stack;

bool trace_back_flag = true;
while (true)
{
if (trace_back_flag == true)
{
if (run == root)
{
if (run->sub_ptr.begin() == run->sub_ptr.end())
{
delete root;
return;
}
}
else
{
if (run->type_flag == TrieTreeNode::DATANODE)
{
delete run;
run = work_stack.top().first;
work_stack.top().second = run->sub_ptr.erase(work_stack.top().second);
trace_back_flag = false;
continue;
}
}

work_stack.push(make_pair(run, run->sub_ptr.begin()));
run = run->sub_ptr.begin()->second;
}
else
{
if (run == root)
{
if (work_stack.top().second == root->sub_ptr.end())
{
delete root;
return;
}

run = work_stack.top().second->second;
trace_back_flag = true;
}
else
{
if (work_stack.top().second != run->sub_ptr.end())
{
run = work_stack.top().second->second;
trace_back_flag = true;
}
else
{
delete run;
work_stack.pop();
run = work_stack.top().first;
work_stack.top().second = run->sub_ptr.erase(work_stack.top().second);
}
}
}
}
}

TrieTreeNode *TrieTree::copy()
{
TrieTreeNode *be_copied = root;
stack<pair<TrieTreeNode *, map<string, TrieTreeNode *>::iterator>> work_stack;
stack<pair<TrieTreeNode *, map<string, TrieTreeNode *>::iterator>> copy_trace_stack;
TrieTreeNode *root_of_copy = nullptr;

bool trace_back_flag = true;
while (true)
{
if (trace_back_flag == true)
{
if (be_copied == root)
{
root_of_copy = new TrieTreeNode(*be_copied);
if (be_copied->sub_ptr.begin() == be_copied->sub_ptr.end())
{
break;
}
copy_trace_stack.push(make_pair(root_of_copy, root_of_copy->sub_ptr.begin()));
}
else
{
if (work_stack.top().second == work_stack.top().first->sub_ptr.begin())
{
copy_trace_stack.top().second->second = new TrieTreeNode(*be_copied);
}
else
{
++copy_trace_stack.top().second;
copy_trace_stack.top().second->second = new TrieTreeNode(*be_copied);
}
if (be_copied->type_flag != TrieTreeNode::DATANODE)
copy_trace_stack.push(make_pair(copy_trace_stack.top().second->second, copy_trace_stack.top().second->second->sub_ptr.begin()));
else
{
be_copied = work_stack.top().first;
trace_back_flag = false;
continue;
}
}

work_stack.push(make_pair(be_copied, be_copied->sub_ptr.begin()));
be_copied = be_copied->sub_ptr.begin()->second;
}
else
{
map<string, TrieTreeNode *>::iterator tempit = work_stack.top().second;
if (tempit->second->type_flag != TrieTreeNode::DATANODE)
{
copy_trace_stack.pop();
}

if (be_copied == root)
{
if (++(work_stack.top().second) == root->sub_ptr.end())
break;

be_copied = work_stack.top().second->second;
trace_back_flag = true;
}
else
{
if (++(work_stack.top().second) != be_copied->sub_ptr.end())
{
be_copied = work_stack.top().second->second;
trace_back_flag = true;
}
else
{
work_stack.pop();
be_copied = work_stack.top().first;
}
}
}
}
return root_of_copy;
}

int main()
{
vector<string> test = {"abcd", "abydb", "ary", "AFD", "abyc", "AFDGH", "AFMGB", "AFMGRQ", "cdfg", "cdgkn", "cdgkmq"};
TrieTree test_obj;
for (vector<string>::iterator p = test.begin(); p != test.end(); ++p)
{
cout << "插入字符串" << *p << endl;
test_obj.insert(*p);
}

cout << endl;
// TrieTreeNode *copy = test_ptr.copy();
for (vector<string>::iterator p = test.begin(); p != test.end(); ++p)
{
cout << "删除字符串" << *p << endl;
test_obj.deleteElem(*p);
}
cout << endl;
}